CDC LABORATORY SYSTEMS, PATHOLOGY AND DIAGNOSTIC ROLE IN GLOBAL HEALTH

KEVIN L KAREM PHD
ASSOCIATE DIRECTOR FOR LABORATORY SCIENCE
CENTER FOR GLOBAL HEALTH
CENTERS FOR DISEASE CONTROL AND PREVENTION
On July 1, 1942 the Communicable Disease Center (CDC) opened its doors and occupied one floor of a small building in Atlanta. Its primary mission was simple yet highly challenging: prevent malaria from spreading across the nation. Armed with a budget of only $10 million and fewer than 400 employees, the agency’s early challenges included obtaining enough trucks, sprayers, and shovels necessary to wage war on mosquitoes.
A health threat anywhere is a health threat everywhere.
Countries with Outbreaks Reported by GDDOC in 2017
CDC LABORATORIES

1700+ SCIENTISTS
200+ LABS
1 MISSION

PROTECT. AMERICANS. 24/7.
Existing Capacity: USG
Shared Priorities

LABORATORY
- Specimen referral network reaching > 80% of districts
- National reference laboratory performing 6 testing methods under IHR

Surveillance
- >3 core syndromes & confirmed reportable infections
- Capacity to analyze and link data for functional real-time biosurveillance

WORKFORCE DEVELOPMENT
- National workforce planning
- Minimum of 1 trained field epidemiologist per 200,000

EMERGENCY OPERATIONS
- EOC activation when needed
- Functional IMS use for preparedness and response

GLOBAL HEALTH SECURITY AGENDA

IHR

INTERNATIONAL HEALTH REGULATIONS

GHSA
Without capacity for early detection & response

Developed from Pinner et al., J Infect Diseases 1992
If surveillance & response system is effective – *Lab + reporting*

Diagram showing:
- First Case
- Detection/Reporting
- Lab Confirmation
- Response

Potential cases prevented
Emergency Operations Center
Crisis/Outbreak Management

- Deployment
- Logistics
- Epidemiology
- Surveillance
- Lab support
- Response coordination
Unknown Disease Outbreaks Algorithm

- Liberia 2017 N. Meningitis's
- Uganda 2018 Malaria with unusual presentation
Applications of laboratory diagnostics and pathology:

- I.D. Outbreak Response
 - Ebola in West Africa
 - Zika in the Americas

- Potential threats
 - Exposure to pandemic threats (specific threat rule in/out-Ebola, flu)
 - Queens “Lady in the iron coffin”-Smallpox

- Surveillance and evidence based clinical study
 - CHAMPS
Physical appearance is consistent with smallpox

- Umbilicated lesions
- Firm to touch
- Gross pathology
- Lesion distribution
“Normal” skin

Mummy skin

Smallpox in skin

The tissue was poorly preserved so difficult to conclude presence of virus
CHAMPS Journey to Ascertaining Cause of Death

Assigning a definitive cause of death involves a series of steps to collect, analyze and interpret relevant data.

1. **Mortality Surveillance**
 - Identify deaths for MITS and collection of additional data

2. **Community Assessment & Engagement**
 - Understand acceptability of proposed processes

3. **Specimen Collection**
 - Collect tissue and non-tissue specimens for further laboratory analysis

4. **Clinical Data**
 - Verbal Autopsy
 - Gather other information around terminal state to improve context for DeCoDe panel

5. **Microbiology, Real-Time PCR Analysis**
 - Identify pathogens in specimens that may have caused death

6. **Local & Central Histopath Analysis**
 - Analyze tissues to understand pathogens associated with cellular changes; compare central and site findings

7. **DeCoDe Panel**
 - Review all findings and assign a definitive cause of death
<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>In-Country</th>
<th>Central Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path</td>
<td>Culture</td>
</tr>
<tr>
<td>Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placenta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbilical cord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone Marrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spleen/Kidney</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP/OP swab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP/OP swab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP aspirate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSF (if indicated)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hair*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Only collected under extended protocol
*Only collected if child has severe respiratory illness
† For QA/QC
CHAMPS

- Identify infectious agents
- Integrative pathology and diagnostic analysis
- Comparative epidemiology
- Specificity of syndromic cause
- Identification of mortality cause

TaqMan® Array Cards
“Without laboratories men of science are soldiers without arms.”

Louis Pasteur in his laboratory. The red object in the jar is the spinal cord of a rabbit infected with rabies. He used this to develop the rabies vaccine.